Zero-Group-Velocity Propagation Of Electromagnetic Wave Through Nanomaterial
نویسنده
چکیده
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3 × 10m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
منابع مشابه
Electromagnetic Wave Propagation in a Moving Chiral Medium
We analyze the propagation of an electromagnetic plane wave through a chiral medium moving with a constant velocity and endowed with the Post constitutive relations. The covariance under the Lorentz group of Maxwell’s equations and of Post’s relations is used to transform the electromagnetic fields in the moving frame into fields in the frame of a fixed observer. The physical consequences of th...
متن کاملA Study of the Wave Propagation Velocity in Granular Soils Using Discrete Element Method (DEM)
In the present paper, discrete element method (DEM) is used to study wave propagation phenomenon in granular soils. The effect of factors such as coefficient of friction, frequency, normal stiffness and soil gradation on the wave velocity is studied. Using the wall motion based on the sinusoidal function is the method of loading used in this simulation, through which the pressure wave is transf...
متن کاملFrozen light in periodic metamaterials
Wave propagation in spatially periodic media, such as photonic crystals, can be qualitatively different from any uniform substance. The differences are particularly pronounced when the electromagnetic wavelength is comparable to the primitive translation of the periodic structure. In such a case, the periodic medium cannot be assigned any meaningful refractive index. Still, such features as neg...
متن کاملPlane Wave Propagation Through a Planer Slab
An approximation technique is considered for computing transmission and reflection coefficients for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is s...
متن کاملElectromagnetic Waves and Their Application to Charged Particle Acceleration
A wave is a disturbance that propagates through space and time, usually with the transference of energy from one point to another without permanent displacement of particles of the medium. The particles under this situation only oscillate about their equilibrium positions. If the particles oscillate in the direction of wave propagation, then the wave is called longitudinal wave. However, if the...
متن کامل